المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.
|
|
- Ἀκύλας Βουρδουμπάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل آل حمض مع الماء ROOH (aq mk957@hotmailcom تفاعل الحمض الكربوآسيلي تفاعل حمض بيرآلوريك aq HlO 4 ( معادلة تفاعل المعايرة بالنسبة لكل حمض بالنسبة لحمض الكربوآسيلي (aq ROOH HlO4( aq HO( aq lo4 ( aq H O( l بالنسبة لحمض بيرآلوريك aq HlO 4 ( تحديد phالخليط عند التكافو بالنسبة لكل منحنى الطريقة المستعملة نخط مستقيما ( يوازي المماسين لكل منحنى يوجد بينهما وعلى نفس المسافة فيقطع هذا المستقيم المنحنى عند نقطة التكافو E بالنسبة للمنحنى ( نجد 7 E ph و بالنسبة للمنحنى (B نجد 8,5 EB ph بما أن 7< EB ph فا ن المنحنى ( B هو الموافق لمعايرة المحلول (S 4 تحديد ترآيز آل من المحلولين b be a a b be a a عند نقطة التكافو نطبق, 6, a ; B,6mol L و a ;,mol L ت ع (aq ROOH اعتمادا على جدول تقدم تفاعل n n ROOH m ROOH aq ROO ( / ( aq ( aq HO( l ROO ( aq HO( aq 5 تحديد قيمة الثابتة pkللمزدوجة مع الماء معادلة التفاعل حالة المجموعة الحالة البدي ية التقدم آميات وفير حالة التوازن عند تحول آلي وفير وفير ph,5 m المحلول (S هو m ph m b فا ن ph [ HO ] [ HO ] ( HO n( H5O 5 K ( ROOH [ ROOH] [ ROOH] ph [ ROOH] [ HO ] [ ROOH] ph [ HO ] [ ROO ] [ HO ] K ph [ ROOH] [ HO ] حسب المنحنى (B عند ml تعبير ثابتة الحمضية K
2 الدورة العادية,5 K 6,8,5,6 pk بذرة هيدروجين H Log( K H H Log(6,8; 5 4, 5 ROOH aq ROO ( / ( aq تع استنتاج قيمة pk للمزدوجة تصنيع إستر انطلاقا من الحمض الكربوآسيلي ROOH تحديد الصيغة نصف المنشورة للحمض الكربوآسيلي ROOH 6H5OOH نعوض المجموعة حسب صيغة الا ستر المعطاة H ونحصل على الصيغة نصف المنشورة التالية للحمض الكربوآسيلي 6H5OH O تحديد آمية مادة الا ستر المتكو ن عند نهاية التفاعل ننجز الجدول الوصفي لتفاعل الا سترة 6 H5OOH H5OH 6H5OOH5 HO آميات mol ( 8, 8, 8, m,7,7,7 n ( str m n( acid n r 8, n( str 8, n( str r th 5,8 u 8, ( aq( m,4,7,77 7,7% u ( S ( m m معادلة التفاعل حالة المجموعة الحالة البدي ية حالة التوازن التقدم عند تحول آلي m حسب الجدول آمية مادة الا ستر المتكو ن عند نهاية التفاعل التوازن ( هي 5,8 وآمية الحمض الكربوآسيلي المتبقية عند نهاية التفاعل التوازن ( هي mol و n( str أي mol p 5,8 n( str 8, nstr r n( str ( p mol th من العلاقتين نستنتج n r حساب مردود هذا التفاعل حسب تعريف مردود التصنيع حسب النتاي ج والمعطيات ع الجزء الثاني عمود آهرباي ي بالترآيز استنتاج قيمة ثابتة التوازن المقرونة بمعادلة التفاعل انطلاقا من النتاي ج التجريبية u ( S ( u ( aq( K معادلة التفاعل أثناء اشتغال العمود [ u (] [ u (] تعبير ثابتة التوازن من التجربة (b بما أن شدة التيار منعدمة I فتوجد المجموعة في حالة توازن آيمياي ي ت wwwphysiqulyccla mk957@hotmailcom
3 الدورة العادية K Q [ u (] [ u (],, Qr; i [ u (] [ u (] i i i,, r; i i تحديد القطب الموجب للعمود نحدد أولا المنحى التلقاي ي لتطور المجموعة الكيمياي ية Q r; نحسب خارج التفاعل البدي ي i Qr ; i> نلاحظ أن K وبالتالي تتطور المجموعة في المنحى المعاآس طبقا للمعادلة الكيمياي ية التالية ( aq( u ( aq( u ( S ( u ( S ( u ( aq( في الكا س ( وحسب المعادلة الكيمياي ية للتفاعل يحدث اختزال للا يونات L هي القطب الموجب للعمود المدروس * إثبات تعبير التقدم بدلالة الزمن نضع ننجز الجدول الوصفي معادلة التفاعل u عند الكاثود فتكون الصفيحة u ( aq( u( S ( u آميات mol ( ( S ( u ( aq( التقدم حالة المجموعة آمية مادة الا لكترونات n( الحالة البدي ية المتبادلة n ( n ( èq I t F I t F ( mol 4 t 965 èq حالة بينية حالة التوازن èq F n( ومنه I t n ( و لدينا العلاقة 7,5 7 حسب الجدول t t يصبح تعبير التقدم بدلالة الزمن هو وبما أن t t ( s, 5 5 m m èq( t 7,5 τ ( t m 5 τ (min, t,45 4 t 6,6 6% وحسب الجدول الوصفي èq ( èq t [ u ] [ ] min mol تع * حساب نسبة التقدم عند اللحظة t t لنحدد التقدم الا قصى نسبة التقدم عند اللحظة وعند اللحظة min إيجاد الترآيزين عند استهلاك العمود ( u ( ومنه QrK عند استهلاك العمود,, 5,5 mol èq wwwphysiqulyccla mk957@hotmailcom
4 4 الدورة العادية ومنه الفيزياء, 5,5 [ u (] [ u (] 5,5 mol L Z ( 6 4 Z 7 Z 4 6 β تمرين التا ريخ بالكربون 4 ينتج عن تفتتها النواة Y إشعاعية النشاط Z Y Y ( نواة الكربون 4 معادلة التحول النووي حسب قانوني صودي فتكون النواة المتولدة حسب الجزء من مخطط سيغري( Z, N هي نواة النيتروجين N ' ' Z B y ' Z ' ' Z ' معادلة تحول نواة الكربون إلى نواة البور B حسب الجزء من مخطط سيغري( Z, N فا ن نواة البور B حسب قانوني صودي لها العدد الذري 5' Z y ' ( y ' 6 5B 4 6 El ( 46,47, 99, Mv E l 99, Ε 7,8Mv / nucléon 4 4 E El( 6 El( 7N 99, (46, 44,,8Mv Elibré E, 8Mv 4 4 الاعتماد على مخطط الطاقة أيجاد طاقة الربط بالنسبة لنوية لنواة الكربون 4 حسب تعريف طاقة الربط نجد فتكون قيمة طاقة الربط بالنسبة لنوية لنواة الكربون 4 القيمة المطلقة للطاقة الناتجة عن تفتت نواة الكربون 4 حسب مخطط الطاقة تكون الطاقة المحررة هي تحديد عمر خشب قديم حساب عدد نوى الكربون N( وعدد نوى الكربون ( 4 N في القطعة التي أخذت من الشجرة الحية,m من قطعة الشجرة الحية هي آتلة الكربون الموجودة في الكتلة 95g m( (5,% m,5,95, 54g N( m ( n( M ( M ( ونعلم أن N wwwphysiqulyccla mk957@hotmailcom
5 5 الدورة العادية ومنه N( m ( N M (,54 6, 7,58 noyau 4 ( N N( 4, 4 ومنه عدد نوى الكربون N( لحساب عدد نوى الكربون 4 هو في القطعة الحية نستعمل العلاقة N( N( N(, 7,58, 9, 9 noyau تحديد عمر قطعة الخشب القديم لتكن a نشاط عينة الكربون 4 في القطعة الحديثة و aنشاط عينة الكربون 4 في القطعة القديمة التي عمرها t,4 a( t a, Bq حسب المعطيات 6 لنحسب قيمة النشاط a 4 ln( 4 a λ N( N( t/ ln( 9 9,,49 Bq 7 57,5 نطبق قانون التناقص الا شعاعي a a ln( λ t λ t a a t a a λ,49 a ln( ln( t t a, / 57 4ans ln( ln( تمرين التبادل الطاقي بين وشيعة و مكثف التذبذبات الكهرباي ية في الحالة التي تكون فيها مقاومة الوشيعة منعدمة المعادلة التفاضلية التي تحققها شدة التيار i dub du قانون إضافية التوترات u b u أو (* في اصطلاح المستقبل du b d i L du dq i di r u b L ( أو بالنسبة للوشيعة ( q u أو وبالنسبة للمكثف wwwphysiqulyccla mk957@hotmailcom
6 6 الدورة العادية d i d i i i L أو تكتب المعادلة (* L نعتمد على الشكلين ( و ( أ * تحديد E قيمة الطاقة الكلية للدارة E E الطاقة الكلية هي مجموع الطاقة الكهرباي ية E والطاقة المغنطيسية Em أي Em بما أن قيمة الطاقة الكلية لا تتغير وعندما تنعدم الطاقة الكهرباي ية E تكون الطاقة المغنطيسية Emقصوية, ms π E Em(,5s 5,8 7 J وحسب الشكل( * استنتاج قيمة التوتر U E E( Em( E U عند اللحظة t 7 U E 5,8 9 8 ومنه ب تحديد قيمة L من الشكل( نعين الدور الخاص للدارة( ( L المتوالية الحرة غير المخمدة L 4 π L L ( π 4 π (,, H نستعمل علاقة الدور الخاص استجابة وشيعة ذات مقاومة مهملة لرتبة توتر ; المعادلة التفاضلية التي تحققها شدة التيار ( i(tالمار في الوشيعة في المجال الزمني / ul ur E (* قانون إضافية التوترات u R Ri في اصطلاح المستقبل قانون أوم للموصل الا ومي u di L L في اصطلاح المستقبل التوتر بين طرفي الوشيعة di R E i أو L di Ri E تكتب المعادلة (* L L t /τ i( t I يكتب حل المعادلة التفاضلية على الشكل t u R ( ومنه أ الدالة (t i f أسية تزايدية وآذلك الدالة g(t u R لا ن t Ri ( المنحنى ( يوافق التوتر u R والمنحنى ( يوافق التوتر u L ur ma E 4 I, 4 ب من المنحنيين ( و( نجد R R [ ] wwwphysiqulyccla mk957@hotmailcom
7 7 الدورة العادية I [ ] [ ] I t i( مع / 4 t I إثبات التعبير حسب الشكل 4 نلاحظ أن الدور 8τ ومنه 6τ t 6 t /τ i( t 6 τ فا ن i( t حسب التعبير t / نلاحظ أن الدالة (t i f متصلة عند اللحظة 4τ i(4 ومنه τ 4 4 [ ] i(4 τ I وبالتالي 54,6>> وبما أن فا ن و أي i( t I τ I I 4 التذبذبات في حالة وشيعة ذات مقاومة غير مهملة تكون الطاقة المخزونة في الوشيعة 4 إذا t لا ن عند هذه اللحظة تنعدم الشحنة q( t (الشكل 5 5 q( t أ قصوى عند اللحظة ms t لا ن عند هذه اللحظة تا خذ الشحنة قيمة قصوى د دنيا عند اللحظة ms (الشكل 5 L d q dq 4π λ q إثبات المعادلة التفاضلية u b u (* حسب قانون إضافية التوترات c di dq d q u b r i L r L و u c d q dq L r q π 4π r λ ونعلم أن L نضع d q dq 4π λ q L بالنسبة ل لتكون r ( r / L r >> 4π L 4π 6 π L L r << q في اصطلاح المستقبل تكتب المعادلة (* d q r dq q L L أو فنحصل على المعادلة التفاضلية إيجاد الشرط الذي يجب أن تحققه λ 4π λ تتحقق هذه المتساوية لما يتحقق << أي 4π 4 L أو << r و بالتالي يكون الشرط المطلوب هو wwwphysiqulyccla mk957@hotmailcom
8 8 الدورة العادية t تمرين الجزء الا ول دراسة حرآة متزلج يغادر المتزلج النقطة O عند اللحظة إيجاد المعادلة التفاضلية التي تحققها آل من v و vإحداثيي y المجموعة المدروسة } المتزلج} بسرعة بدي ية متجهتها v تكو ن الزاوية α مع المستقيم الا فقي ( O, i, j في المعلم v ma mg ma a G G G g يخضع المتزلج إلى وزنه فقط في مرجع أرضي نطبق القانون الثاني لنيوتن dv a ( * الا سقاط على المحور O dvy ay g g ( * الا سقاط على المحور الرأسي Oy آتابة معادلة المسار في المعلم الديكارتي vsin( ( v y وبا نجاز تكامل للعلاقتين( و( نتوصل α و ( v vcos( (α باعتبار الشرط البدي ي للسرعة vy g t vsin( α α v v cos( و (' (' إلى المعادلتين (y وبا نجاز تكامل للعلاقتين ( و( نتوصل إلى المعادلتين ( و باعتبار الشرط البدي ي للموضع y( t gt vsin( α t ('' و t ( vcos( α ('' t الزمنيتين من العلاقة ( نجد t ونعوض هذا التعبير في المعادلة ( فنحصل على معادلة المسار v cos( α B H g v cos ( α 4h d m y ( g tan( α v cos ( α تحديد القيمة الدنيا h m لكي لا يسقط المتزلج في البرآة لتكن موضع سقوط المتزلج ولكي لا يسقط المتزلج في البرآة ينبغي أن يتحقق الشرط ( tan( α ( العلاقة (, y H تنتمي إلى المسار وتحقق إحداثيتها d dtan( α H cos ( α 4hcos ( α v gh tan( α H فا ن hh m النقطة لدينا حسب المعطيات فتصبح العلاقة الا خيرة تكتب العلاقة ( B عند d wwwphysiqulyccla mk957@hotmailcom
9 9 الدورة العادية h m d 4cos ( α ( dtan( α H ونتوصل إلى النتيجة التالية 6,m 4cos ( (tan(,5 الجزء الثاني السقوط الرأسي لكرية فلزية دراسة حرآة الكرية في الهواء تعبير R بدلالة و g و ρ و v و t بتطبيق القانون الثاني لنيوتن المجموعة المدروسة } الكرية} R جرد القوى الخارجية المطبقة على المجموعة أثناء حرآتها وزنها و القوة الرأسية تا ثير الهواء R ma الذي نعتبره غاليليا ( O, نطبق القانون الثاني لنيوتن في المعلم المرتبط بالا رض i G R ma ρ G a G ( O, نسقط هذه العلاقة المتجهية على المحور الرأسي i الموجه نحو الا سفل ρ ( g ρ v a G t,6 (,7 t v( ومنه ag في المجال الزمني[, t ] فا ن سرعة الكرية دالة خطية معادلتها t f v R ρ ( g t R,7,4 N 4, F t, 5s و v 6 (9,8 نستنتج أن تعبير حساب قيمة Rهو باستثمار المنحنى,5 m s R من المنحنى نجد ع دراسة حرآة الكرية داخل الساي ل اللزج إيجاد المعادلة التفاضلية التي تحققها السرعة v المجموعة المدروسة } الكرية} تا ثير دافعة أرخميدس تا ثير قوة الاحتكاك F f ma G,O ( الموجه نحو الا سفل i تخضع الكرية إلى وزنها نطبق القانون الثاني لنيوتن في معلم أرضي فنكتب نسقط هذه العلاقة المتجهية على المحور الرأسي dv Ff ma G ρ gρ g K v ρ dv ρ K ( g v (* ρ ρ 9,8 5,m s إذا ρ ( باستعمال هذه المعادلة نحسب المقدار g( ρ ت wwwphysiqulyccla mk957@hotmailcom
10 الدورة العادية v l 5,,m s 6 و vv l ومنه [ K] [ f] [ v] dv وفي النظام الداي م v l,m s M ML L K 6 ρ dv 5, 6 v باستعمال المعادلة ('* باستعمال المنحتى في النظام الداي م نجد * تحديد ب عد K لدينا تعبير شدة قوة الاحتكاك الماي ع Kv f * حساب قيمة وبالتالي K بمطابقة المعادلتين (* و ('* نستنتج أن K 6 ρ 6,7,kg s 4, 6 vi ( 6 t vi 5, 4 إثبات التعبير t vi vi vi vi ai تعطي علاقة التا طير ai أو t t a i 5, 6 حسب المعادلة التفاضلية ( i v vi vi ثم نتوصل إلى 5, t 6 vi t أي vi vi (5, 6 vi نعوض في العلاقة الا ولى t ( v ( 6 t v 5, t v i ( 6 5,9ms i i,8 5, 5 حساب i v wwwphysiqulyccla mk957@hotmailcom
: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq
تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة
المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph
8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol
المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH
8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول
jamil-rachid.jimdo.com
تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:
المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V
8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي
() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن
تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل
ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6
ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة
Le travail et l'énergie potentielle.
الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة
تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية
مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل
تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين
تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع
du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc
ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر
التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S
امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية
ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت
OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5
الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.
الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة
- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم
تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز
- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5
تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )
الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.
GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف
prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( )
الثانوية الفلاحية باولادتايمة فرض رقم الدورة الثانية يوم - 010/5/19 مدة الا نجاز: ساعتين- التمرين الا ول فيزياء : 9 نقط يمكن لجسم صلب ) S ( آتلته = 1Kg نعتبره نقطيا أن ينزلق فوق سكة ABC مكونة من : prf
تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن
تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C
التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =
-i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب
الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A
التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل
( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات
الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن
-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }
الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة
dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ
حرآة دوران جسم صلب حول السرعة الزاوية-التسارع الزاوي: 1) تذآير: محور ثابت I الا فصول الزاوي يكون جسم صلب غير قابل للتشويه في حرآة دوران حول محور ثابت إذا آانت جميع نقطه لهاحرآة داي رية ممرآزة على هذا المحور
( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية
أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن
تمارين توازن جسم خاضع لقوتين الحل
تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية
( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r
نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع
مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن
أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة
**********************************************************
اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8
Dipôle RL. u L (V) Allal mahdade Page 1
ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة
التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.
التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين
( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3
) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين
( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B
الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM
2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :
اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب
أ- سلسلة تمارين حول التحكم في تطور مجموعة آيمياي ية 1 )التمرين رقم 1 الصفحة 167 المفيد في الكيمياء: عين من بين الجزيي ات التالية إلى أي مجموعة تنتمي وأعط أسماءها : CH 3 -CO-O-CO-CH 3 ( CH 3 -CO-O-CH 3
( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (
الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )
ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا
الميكاني ك La mécanque قوانين نيوتن I متجهة السرعة ومتجهة التسارع: ) تذآير: : الحرآة نسبية أي الا جسام لا تتحرك إلا بالنسبة لا جسام أخرى.إذن لدراسة حرآة جسم يجب اختيار جسم مرجعي. ولتحديد موضع الجسم المتحرك
( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في
الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة
( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1
الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد
الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5
4 المركز الوطني للتقويم واالمتحانات والتوجيه المادة الفيزياء والكيمياء االمتحان الوطني الموحد للبكالوريا مدة اإلنجاز 8 الدورة العادية 4 NS 3 wwwtawjihproco 7 الشعبة أو المسلك شعبة العلوم الرياضية )أ( و)ب(
: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )
التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي
H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/
الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم 6 الدورة الثانية المستوى: الثانية باك علوم فيزياي ية ملحوظة: يو خذ بعين الاعتبار تنظيم ورقة التحرير يجب أن تعطي العلاقة الحرفية قبل التطبيق العددي استعمال
[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي
O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي
تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH
اإلجابة النموذجية ملووو اتحاا اخحبار تادة الحكنولوجيا (هندسة الطرائق ( البكالوريا دورة 6 الشعبة املدة 44 سا و 34 د,5 M n = M polymère monomère ; 5 نقاط ) التمرين األول ( إيجاد الصيغة المجممة لأللسان A
Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6
1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا
C 12 *** . λ. dn A = dt. 6 هو ans
الجمهورية الجزاي رية الديمقراطية الشعبية. وزارة التربية الوطنية. ثانوية عمر بن عبد العزيز/ندرومة. مديرية التربية لولاية تلمسان. الامتحان التجريبي في العلوم الفيزياي ية. التمرين الا ول: () شعبة :العلوم
التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s )
التطورات : المجال الرتيبة : 5 الوحدة جملة ميآانيآية تطور ر ت ت ر ع المستوى: 5 : رقم السلسلة V z mm / s. t s تم تصوير السقوط الشاقولي لآرية داخل زيت. و بعد معالجة المعطيات بالا علام الا لي تم الحصول على
الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran
GUEZOURI Aek lcée Ml - O الكتاب الا ول الوحدة 05 التطورات الرتيبة تطور جملة ميكانيكية الدرس الا ول ما يجب أن أعرفه حتى أقول : إني استوعبت هذا الدرس يجب أن أعرف آيفية تحديد جملة ميكانيكية حسب ما ي طل ب
( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (
المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط
منتديات علوم الحياة و الأرض بأصيلة
www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن
فرض محروس رقم 1 الدورة 2
ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في
( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2
التطورات المجال الرتيبة الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم سلسلة وآمية من غاز ثناي ي الهيدروجين H آتلتها g بواسطة L في مفاعل صناعي نضع حجما من غاز ثناي ي الازوت N
Noyau,masse et énergie
النوى الكتلة والطاقة Noyau,masse et énergie I التكافو "آتلة طاقة" علاقة إنشتاين توصل العالم إنشتاين من خلال الميكانيك النسبوية الخاصة سنة 905 م إلى أن هناك تكافو بين الكتلة والطاقة. تمتلك آل مجموعة آتلتها
األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية
http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:
( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.
عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في
. C 0 = 10 3 mol /l. N A = 6, mol 1
مديرية التربية لولاية الشلف الشعبة : رياضيات تقني رياضي ملاحظة : يعالج المترشح ا حد الموضوعين على الخيار الجمهورية الجزاي رية الديمقراطية الشعبية متقن مرسلي عبد االله سيدي عكاشة - امتحان البكالوريا التجريبي
التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3
بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H
يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان
األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي
وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء
الشعبة : علوم تجريبية ساعات 4 ) : الا ول ا الجزاي رية الديمقراطية الشعبية الجمهورية وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا نقاط) اختبار في مادة الفيزياء والكيمياء المدة : حمض الميثانويك
التطورات : : 05 : : : : W AB. .cos. P = m g. mgh. mgh E PP. mgh. mgh. s A K mol cd E PP = 0 : ( الطول. B m
التطورات المجال الرتيبة 5 الوحدة جملة ميآانيآية تطور ر ت ت + ر+ ع المستوى 5 رقم الملخص مآتسبات قبلية مبدأ انحفاظ الطاقة مبدأ انحفاظ الطاقة نص الطاقة لا تستحدث و لا تزولإذا اآتسبت جملة ما طاقة أو فقدتها
دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.
الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات
الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم
المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف
الا شتقاق و تطبيقاته
الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................
الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض
س. التنقيط ا كاديمية جهة سوس ماسة درعة نيابة تارودانت ثانوية عبد االله الشفشاوني التا هيلية ا ولاد تايمة الكيمياء: الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا
( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade Page 1.
الدارة (,L,C) المتوالية في النظام الجيبي والقسري. Crct (,L,C)en sére en rége snsoïdal forcé رأينا سابقا أن الدارة LC المتوالية تكون متذبذبا آهرباي يا مخمدا. عند إضافة مولد آهرباي ي مرآب على التوالي إلى
یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مكونات الموضوع
س 3 المركز الوطني للتقویم والامتحانات المادة : الشعب (ة): -الدورة العادیة 2008-1 المعامل : 7 یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مدة الا نجاز: مكونات
حركة دوران جسم صلب حول محور ثابت
حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين
الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB
المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية
الكيمياء. allal Mahdade 1
الكيمياء الا ستاذ : علال محداد http://sciencephysique.ifrance.com allal Mahdade http://sciencephysique.ifrance.com 1 I الجسم الصلب الا يوني أمثلة لا جسام صلبة أيونية : بلورات آلورور الصوديوم وفليورور الكالسيوم
02 : رقم الوحدة المجال الرتي المستوى: 3 التطورات + ر+ الدرس : 02. lim. lim. x x Kg A = Z + N. + x = x y e = a = .
التطورات المجال بةةةة الرتي الوحدة النووية التحولات ر ت ر ت ع المستوى رقم الدرس b عددان حقيقيان i a 7 الا ساس النبيري i y ] y [ y y حيث قبلية مآتسبات الا سية الدالة b أ شآلها f a معرفة في المجال [ - ]
+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.
الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :
3as.ency-education.com
اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة الطرائق) / الشعبة : تقين رايضي / بكالوراي / 712 : موضوع العالمة مجموع مجزأة عناصر اإلجابة (الموضوع األول) التمرين األول 8( : نقاط) ) 1 -I 2,25
بحيث ان فانه عندما x x 0 < δ لدينا فان
أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x
التا ثیر البینیة المیكانیكیة
التا ثیر البینیة المیكانیكیة I التجاذب الكوني 1 1 مبدأ التا ثیرات البینیة نص المبدأ : عندما يتم تا ثير بيني سواء بالتماس أو عن بعد بين جسمين و فا ن القوة F / التي يطبقها الجسم على الجسم والقوة F / التي
********************************************************************************** A B
1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1
1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol)
S, mol V = ml S : t = c = / L ( K (aq ) SO8 ) (aq ). c ( K (aq ) I (aq ) ) V = ml. [ I (aq ) ] 6. [I ]mmol/l - 4 3 3 4 6 7 8 9 - (Ox / Red) -.. -3. -4. -. -6 x -7. I ] f (t) [ (aq ) =. t = mn -8 [ I (aq
7 ﻞ : ﻣﺎﻌﻤﻟا RS28 ﺀﺎﻴﻤﻴﻜﻟﺍﻭ ﺀ ﺎﻳﺰﻴﻔﻟﺍ ةد : ﺎـ ــ ــ ـــ ـ ﻤﻟا
1 7 المادة: الفيزياء والكيمياء RS8 المعامل: الشعب(ة) أو المسلك : شعبة العلوم التجريبية مدة الا نجاز: يسمح باستعمال الا لة الحاسبة العلمية غير القابلة للبرمجة يتضمن الموضوع ا ربعة تمارين : تمرين في الكيمياء
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد املوضوع األول
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد 15/5/1 التاريخ : قسم : السنة الثالثة علوم تجريبية االمتحان التجرييب لشهادة البكالوريا يف مادة العلوم الفيزيائية 3 المدة : 15/14 السنة الدراسية
ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I
الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:
استثمار تسجيلات لحساب السرعة اللحظية. التعبير عن الحركة المستقيمية المنتظمة بمعادلة زمنية في شروط بدي ية مختلفة.
فيزياء درس 3 الجدع المشترك الكفايات المستهدفة معرفة مفهوم معلم الفضاء ومعلم الزمن تعيين مسار نقطة من متحرك في معلم محدد حساب السرعة المتوسطة استعمال العلاقة التقريبية لحساب السرعة اللحظية - ms والعكس إلى
1/7
I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و
1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( )
ثانوية صاالح الدين األيوبي امتحان البكالوريا التجريبي دورة 2014 العلوم الفيزيائية المادة : المدة : أربع ساعات ونصف (4 سا 30 د) الشعبة : رياضيات و تقني رياضي لإلجابة عليه على المترشح أن يختار أحد الموضوعين
x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 -
التطورات المجال الرتيبة جملة كيمياي ية تطور 0 الوحدة حالة التوازن نحو ر ت ر ت ع المستوى 0 رقم ملخص O الا سس حسب تعريف برونشتد و الا حماض الا حماض الحمض تعريف أو أآثر. هو آل فرد آيمياي ي شاردة جزئ بامآانه
الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4
المستوى : السنة الثانية ثانوي الوحدة 08 تعيين آمية المادة بواسطة المعايرة GUEZOURI Lycée Maraval - Oran ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - 1 يجب أن أفر ق بين حمض وأساس حسب تعريف برونشتد
دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol
الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة 5 ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف عليي صالح بن ثانية تجريبية علم الشعبة الا ل التمرين
بحيث = x k إذن : a إذن : أي : أي :
I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها
Site : Gmail : Page 1
الفيزياء األستاذ : رشيد جنكل القسم : السنة الثانية من سلك البكالوريا الشعبة : علوم تجريبية ع ف سلسلسة رقم 1 الدورة الثانية الميكانيك : جميع الدروس التحوالت التلقائية في األعمدة وتحصيل الطاقة / أمثلة لتحوالت
**********************************************************************************
1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ
الموافقة : v = 100m v(t)
مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة
M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.
: - 07 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.co/site/faresfergai تاريخ ا خر تحديث : 03/03/
الميكانيك. d t. v m = **********************************************************************************
1 : 013/03/ : - - - : 01 الميكانيك الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani :א ن מ 1
متارين حتضري للبكالوريا
متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا
تصميم الدرس الدرس الخلاصة.
مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال
2O RS28 المادة
ا 1 لصفحة الامتحان الوطني الموحد للبكالوريا O16 - - RS8 3 المادة الفيزياء والكيمياء مدة الا نجاز الشعبة أو المسلك شعبة العلوم التجريبية مسلك العلوم الفيزياي ية المعامل سمح باستعمال لة ا اسبة العلمية غ
الفصل الثالث عناصر تخزين الطاقة الكهربائية
قانون كولون الفصل الثالث عناصر تخزين الطاقة الكهربائية - - مقدمة : من المعروف أن ذرة أي عنصر تتكون من البروتونات واإللكترونات والنيترونات وتتعلق الشحنة الكهربائية ببنية الذرة فالشحنة الموجبة أو السالبة
1/ الزوايا: المتت امة المتكاملة المتجاورة
الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا: